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Abstract. An approach to calculate radiative corrections to the unpolarized cross section of semi-inclusive
electroproduction is developed. Explicit formulae for the lowest order QED radiative correction are pre-
sented. A detailed numerical analysis is performed with the kinematics of experiments with fixed targets.

1 Introduction

Semi-inclusive processes of hadron electroproduction have
been recognized long ago [1] as an important tool for
testing QCD predictions of the nucleon structure because
them allow one to get information about the quark distri-
butions in the nucleon for each flavour separately. A pre-
cise analysis of the hadron structure functions extracted
from the experimental data requires, however, an iterative
procedure involving the radiative correction (RC) of these
data. Firstly, radiative effects in coincidence experiments
were discussed in [2]. Covariant formulae for the RC to
the cross section of semi-inclusive processes can be ob-
tained on the basis of the Bardin and Shumeiko approach
offered in [3] originally for elastic scattering. In [4] the
method was developed on semi-inclusive processes, where
analytical formulae for the lowest order RC for coincident
processes in electroproduction were found. In this paper
we present analogous formulae, but contrary to results of
[4] we do not assume integration over the hadronic kine-
matical variables p2

t and φh. This allows one to calculate
the model-independent RC relying only on the common
representation for the hadronic tensor. We should point
out that there are other possible frameworks to calculate
the semi-inclusive RC. One of them is based on the Monte
Carlo approach; e.g., at HERA the generator HERACLES
[5] is used.

In recent years the cross sections of the hadron electro-
production on fixed targets were measured as functions of
azimuthal angles and transversal momentum of the regis-
tered particles (see [6,7] and references therein). However,
this information is not sufficient to extract all structure
functions involved in the hadronic tensor in the wide kine-
matical region required for the RC calculation. Therefore,
we have to use some model for the semi-inclusive struc-
ture functions. Such a model should give a good initial ap-
proximation for the iterative procedure, and we hope that
the model for the structure functions which can be con-
structed on the basis of results of Mulders and Tangerman
[8] is an appropriate one. It should be noted that unpolar-
ized structure functions were considered in [8] along with

the spin dependent distributions. However, in this paper
we restrict ourselves only to the calculation of the RC to
the unpolarized cross section. The consideration of RCs
to observable quantities in polarization experiments on
hadron electroproduction will be the subject of a separate
publication. Notice that for azimuthal effects we addition-
ally use a model given in [9] (see also [10]).

Thus we calculate QED radiative corrections to hadron
electroproduction, which give a main contribution to the
total correction in the experiments at fixed target. The
pure weak corrections as well as hadronic radiation re-
quire additional assumptions about the hadronic interac-
tions, so they are not considered here. In order to take
into account the multiple soft photon radiation, the in-
frared corrections have to be exponentiated according to
one of the several possible approaches [11]. We choose to
follow the prescription of [12].

In Sect. 2 we briefly describe the kinematics of the
hadron electroproduction process with and without radia-
tion of an additional photon. The hadronic tensor and the
model for the structure functions are discussed in Sect. 3.
The analytical formulae for the Born cross section and
for the RC of the lowest order are given in Sects. 3 and
4. In this paper, only one ultrarelativistic approximation
is made: the electron mass is considered to be small. We
note that the final analytical formulae are written in the
form similar to that used in the FORTRAN code POL-
RAD 2.0 [13]. Section 5 is devoted to a numerical analysis,
performed on the basis of the new code HAPRAD spe-
cially developed by us for this purpose. Most cumbersome
formulae are gathered in the Appendix.

2 The kinematics

The cross section of hadron h electroproduction

e(k1) + N(p) −→ e′(k2) + h(ph) + X(px) (1)

depends on five kinematical variables which can be chosen
as

x, y; z, t, φh, (2)
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where x and y are the usual scaling variables, z and t are
defined via the hadron momentum,

t = (q − ph)2, z = php/pq, q = k1 − k2, (3)

φh is an angle between the planes (k1,k2) and (q,ph) in
the rest frame (p = (M,0)). Also the following invariants
will be used:

S = 2k1p, X = 2k2p = (1 − y)S, Q2 = −q2 = xyS,

W 2 = Sx − Q2 + M2, Sx = S − X, Sp = S + X,

λQ = S2
x + 4M2Q2,

M2
x = p2

x = (1 − z)Sx + M2 + t, V1,2 = 2k1,2ph. (4)

When the radiative process

e(k1) + N(p) −→ e′(k2) + γ(k) + h(ph) + X(p̃x) (5)

is considered, three additional independent variables have
to be introduced:

R = 2kp, τ = qk/kp, φk, (6)

where φk is the rest frame angle between the planes (k1,k2)
and (q,k). Also we introduce the quantity µ = kph/kp and
the following invariants:

Q̃2 = (q − k)2 = Q2 + Rτ,

W̃ 2 = (p + q − k)2 = W 2 − R(1 + τ),
t̃ = (q − k − ph)2 = t + R(τ − µ),

M̃2
x = p̃2

x = M2
x + R(1 + τ − µ). (7)

The phase space of the three final particles is param-
eterized as

d3k2

k20

d3ph

ph0

d3k
k0

= πSxdxdy
Sxdzdtdφh

2
√

λQ

RdRdτdφk√
λQ

. (8)

Instead of the t-dependence we will also consider the cross
section as a function of the transversal momentum pt de-
fined in (A.8).

We are interested in the explicit dependence on the an-
gles φh and φk. So it is useful to take some scalar products
with ph in the form

1
2
V1,2 = k1,2ph = a1,2 + b cos φh, (9)

1
2
µR = kph = R(ak + bk(cos φh cos φk + sinφh sinφk)).

Also, we will use a± = a2 ± a1. The explicit expressions
for the coefficients are given in the Appendix, see (A.7).

3 The hadronic tensor
and the Born approximation

The cross section of the electroproduction process can
be obtained in terms of the convolution of leptonic and

hadronic tensors. There are two leptonic tensors: with and
without additional radiated photon. The Born leptonic
tensor (without a photon) is standard, and the radiative
one is cumbersome. The explicit expressions for the lep-
tonic tensors and formulae for the RC in terms of them
can be found in [14,15].

The hadronic tensor without the T - and P -odd terms
can be presented in the form [16,17]

Wµν = −g̃µνH1 + p̃µp̃νH2 + p̃µ
hp̃ν

hH3 + (p̃µp̃ν
h + p̃µ

hp̃ν)H4,
(10)

where

g̃µν = gµν +
qµqν

Q2 , p̃µ = pµ +
qµpq

Q2 , p̃µ
h = pµ

h +
qµphq

Q2 ,

(11)
and all of the SF depends on four kinematical invariants
(for example, Q2, W 2, t, z) The model for the structure
functions can be constructed on the basis of results of
the paper by Mulders and Tangerman [8]. Keeping only
the leading twist contribution we have for the structure
functions

H1 =
∑

q

e2
qfq(x)DqG,

H2 = −p2
t + m2

h

M2E2
h

∑
q

e2
qfq(x)DqG,

H3 = 0,

H4 =
1

MEh

∑
q

e2
qfq(x)DqG, (12)

and
G = G1 = bs exp(−bsp

2
t ), (13)

where bs = R2
b/z2 is a slope parameter and Rb is a pa-

rameter of the model. eq, fq(x) and Dq are the charge,
distribution and fragmentation function of the quark with
flavour q. The expressions for the hadron energy Eh in the
lab frame and its transversal momentum pt are given in
the Appendix; see (A.8).

The Born cross section has the following dependence
on φh:

σ0 =
dσ0

dxdydzdp2
tdφh

=
N

Q4 (A + cos φhAc + cos 2φhAcc),

(14)
where N = α2ySx/λ

1/2
Q . The coefficients A do not depend

on φh anymore and they have the form

A = 2Q2H1 + (SX − M2Q2)H2

+(4a1a2 + 2b2 − M2
hQ2)H3

+(2Xa1 + 2Sa2 − zSxQ2)H4,

Ac = 2b(2a+H3 + SpH4),

Acc = 2b2H3. (15)

When integrated over the kinematical variables φh and pt
the cross section (14) coincides with the well-known for-
mula for the semi-inclusive cross section calculated within
QPM
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σxyz =
dσ

dxdydz
=

2πα2

yQ2 (y2+2−2y)
∑

q

e2
qfq(x)Dq. (16)

Unfortunately, the p2
t distribution

1
σxyz

dσxyz

dp2
t

≈ G, (17)

calculated with the exponential slope (13) does not fit the
experimental data with sufficient χ2. So the more compli-
cated model [18] with a power dependence on p2

t seems to
be more adequate. Another possibility to reach an agree-
ment with the data consists in the replacement of the
Gaussian factor (13) by the fit of the experimental p2

t dis-
tribution taken in the form [6]

G = G2 =
[

1
c1 + c2z + p2

t

]c3+c4z

. (18)

4 The radiative correction of the lowest order

The cross section that takes into account radiative effects
can be written as

σobs = σ0eδinf (1 + δV R + δvac) + σF . (19)

Here the corrections δinf and δvac come from radiation of
soft photons [12] and the effects of vacuum polarization1.
The correction δV R is an infrared-free sum of factorized
parts of real and virtual photon radiation. These quanti-
ties are given by the following expressions:

δV R =
α

π

(
3
2
lm − 2 − 1

2
ln2 X ′

S′ + Li2
S′X ′ − Q2p2

x

S′X ′ − π2

6

)
,

δinf =
α

π
(lm − 1) ln

(p2
x − (M + mπ)2)2

S′X ′ , (20)

δvac = δlept
vac + δhadr

vac ,

where S′ = X+Q2−V2, X ′ = S−Q2−V1, lm = lnQ2/m2

and Li2 is the Spence function or dilogarithm.
The contribution of the radiative tail has the standard

form [19,15]

σF = −αN

2π

2π∫
0

dφk

τmax∫
τmin

dτ
4∑

i=1

3∑
j=1

θij(τ, φk) ×

×
Rmax∫
0

dRRj−2
[ H̃i

(Q2 + Rτ)2
− δj

Hi

Q4

]
.(21)

Here 2M2τmax,min = Sx ± λ
1/2
Q and Rmax = (M2

x − (M +
mπ)2)/(1+ τ −µ), δj=1 for j=1 and δj=0 otherwise. The
explicit formulae for the functions θ(τ, φk) can be found
in the Appendix. The structure functions Hi are exactly
the same as used for the Born cross section (see (12) for
the model exploited in our paper), whereas H̃i should be
obtained from the Hi by replacing q → q − k in all kine-
matical variables (see (7), for example).

1 There are explicit formulae for the leptonic contribution
to the vacuum polarization effect (see [19] for example) and
parameterization of hadronic one [20]

5 Numerical analysis

In this section we give numerical results for the RC to
the semi-inclusive unpolarized cross section. For all cases
the RC factor is defined as the ratio of observed to Born
cross sections. Also we will speak about the relative RC
(or simply RC), which is the difference between observed
and Born cross sections or asymmetries divided by the
Born ones.

For definiteness we choose the kinematics of the HER-
MES experiment at DESY. First, HERMES is a modern
current experiment with rich possibilities for studies in
semi-inclusive physics (see [7]). Second, HERMES is an
experiment with an electron beam, so relatively large RCs
with respect to the muon DIS experiment are anticipated.

The dependence of the RC on x, y and z is widely dis-
cussed in [4], where the quark-parton model is assumed.
Similar results can be obtained using the formulae of this
paper after integration over pt and θh. In this paper we
concentrate on a comparison of the codes constructed on
the basis of the two sets of formulae and on studying of the
effects beyond the quark-parton model: azimuthal asym-
metries and dependencies on the transversal momentum
pt.

5.1 FORTRAN codes POLRAD 2.0 and HAPRAD

The special FORTRAN code HAPRAD was developed to
calculate the RC to five-dimensional cross section,
d5σ/dxdydzdp2

tdθh. On the other hand there is the code
POLRAD 2.0 with the special patch SIRAD, which calcu-
lated the RC to the semi-inclusive three-dimensional cross
section obtained in QPM.

In this section we show that the numerical results for
the RC to dσ/dxdydz reproduced by these two codes co-
incide with a good accuracy. This can be seen from Ta-
ble 1. In this table we represent the RC to the cross sec-
tion as it follows from runs of the codes POLRAD 2.0
and HAPRAD. Since HAPRAD allows one to take into
account the kinematical cuts and to use different mod-
els for the p2

t -slope, three fits for the p2
t -distribution and

the cases with and without experimental cuts were con-
sidered. The first fit for the p2

t -slope is defined in (13),
while the second and third ones are our fits of the experi-
mental data [6] using exponential (G′

1 = G1 at bs = R2
b/z)

and power (see (18)) functional forms. As the kinematical
cuts on φh and pt of the measured hadron we took the
HERMES geometrical ones [22]. We can conclude from
this analysis that neither important differences between
the SIRAD and HAPRAD results, if an exponential model
for the p2

t -distribution is used, nor a dependence on the
slope parameter model and applying of geometrical cuts
are found. However, the RC takes a negative shift in the
case of the model based on the power functional form (18).
As is discussed below the RC depends on the steepness of
the p2

t -distribution. This is a reason why models like δ(p2
t )

(QPM, POLRAD 2.0) and (13) give a larger RC. Within
a practical RC procedure in a concrete measurement of
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Table 1. The results for the RC factors of the three-dimensional semi-inclusive cross
section obtained using the FORTRAN codes SIRAD and HAPRAD (see text for fur-
ther explanation). The kinematical points are taken from Table 1 of [7]. The following
parameters of the models of G1,2 were used: c1=0.642, c2=0.637, c3=4.91, c4=-0.813,
R2

b=2GeV−2. The parton distributions were taken from [21]

SIRAD HAPRAD
x y Q2 z without cuts with cuts

GeV2 G1 G′
1 G2 G1 G′

1 G2

0.038 0.677 1.33 0.25 1.029 1.033 1.024 0.982 1.041 1.025 0.985
0.062 0.567 1.82 0.35 0.996 0.989 0.989 0.947 0.989 0.980 0.951
0.092 0.529 2.52 0.45 0.970 0.961 0.961 0.934 0.961 0.956 0.936
0.131 0.499 3.38 0.55 0.945 0.936 0.933 0.912 0.934 0.931 0.906
0.198 0.476 4.88 0.65 0.918 0.902 0.902 0.889 0.897 0.897 0.881

y = 0.2 y = 0.4

y = 0.6 y = 0.8
δ

δ

δ

δ

z z

z z

Fig. 1. Radiative correction to the semi-inclusive cross section
for the kinematics of HERMES; S1/2 = 7.19GeV. Symbols
from top to bottom correspond to x = 0.05, 0.45 and 0.7.
The results for x = 0.15 are skipped, because they practically
coincide with the ones for x = 0.05

dσ/dxdydz the model can be fixed only if the information
on the p2

t -distribution is considered additionally.
Also two models for the fragmentation function were

considered: a simple parameterization of the pion data [23]
and a modern model in the next-to-leading order QCD
[24]. The RC factors calculated using these models differ
by several percent. However, this model dependence is less
important because it can be eliminated by applying an
iteration procedure, where a fit of the extracted data is
used for the RC calculation in a subsequent step.

5.2 Cross section and
〈
p2
t

〉
Here we give numerical results for unpolarized cross sec-
tion in kinematics of experiment HERMES [22]. The RC
factor (δ) to the semi-inclusive cross section integrated

δ̄

z = 0.2
z = 0.4

z = 0.6

z = 0.2
z = 0.4

z = 0.6

z = 0.8

pt/pt max

Fig. 2. Radiative correction to the semi-inclusive cross section
vs. pt; (S)1/2 = 7.19GeV, x = 0.15, Q2 = 4GeV2. Dashed and
solid curves correspond to the models (13) and (18), respec-
tively

over pt and φh as a function of x, y and z is presented
in Fig. 1. Furthermore, we analyze the z and pt depen-
dence of the cross section and azimuthal asymmetries.
The dependencies of the RC factor (δ̄ = σ̄obs/σ̄Born) to
the semi-inclusive cross section on the hadronic variables z
and pt are shown in Fig. 2, where sigma bar (σ̄) is meant to
denote the four-dimensional cross section dσ/dxdydzdp2

t .
We note that the obtained large correction to the cross
section vs. pt is an analog of the similar results for vector
meson electroproduction [15]. In our case, the slope pa-
rameter depends on z (see (13)), so we have an important
z-dependence of the effect. However, if the experimental
fit for G is used (solid curves in the Fig. 2) there is no such
rise of the RC for high p2

t values.
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�
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�

z

1) G = G1 (13)

2) G = G2 (18)

1

2

δ̄pt

Fig. 3. Radiative correction to 〈p2
t 〉 defined in (24) for the

HERMES kinematics, (S)1/2 = 7.19GeV, y = 0.4. The curves
from top to bottom correspond to x = 0.15, 0.05 and 0.45

The quantity crucial for QCD predictions [1] 〈p2
t 〉 is

expressed in terms of σ̄ as

〈p2
t 〉 =

∫
dp2

tp
2
t σ̄∫

dp2
t σ̄

. (22)

The RC to this quantity can be expressed as

δpt =
∫

dp2
tp

2
t σ̄obs∫

dp2
t σ̄obs

/∫
dp2

tp
2
t σ̄Born∫

dp2
t σ̄Born

=
δ̄pt

δ
, (23)

where

δ̄pt =
∫

dp2
tp

2
t σ̄obs∫

dp2
tp

2
t σ̄Born

,

δ =
∫

dp2
t σ̄Born∫

dp2
t σ̄obs

. (24)

The correction δ is the semi-inclusive RC factor discussed
above (see Fig. 1). The correction δ̄pt both for the expo-
nential and for the power model (13), (18) is presented in
Fig. 3.

Similar to the case of the p2
t -distribution, the radiative

effect is larger when the exponential model (13) is used.
That is because of the contribution of a small p̃2

t when we
integrate over the phase space of the emitted photon (21).
The steeper the slope of the p2

t -distribution, the larger this
contribution to the RC.

5.3 Azimuthal asymmetries

The following azimuthal asymmetries are measurable in
the experiments [25]

〈cos φh〉 = σ̄−1
obs

2π∫
0

dφh cos φhσobs,

z

< cos(φh) >

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 4. Azimuthal asymmetry 〈cos φh〉 vs. z for y = 0.2 within
the HERMES kinematics; (S)1/2 = 7.19GeV. Dashed (solid)
lines correspond to the Born (observed) asymmetries. Curves
from top to bottom correspond to x = 0.7, 0.45 and 0.05

〈cos 2φh〉 = σ̄−1
obs

2π∫
0

dφh cos 2φhσobs,

〈sinφh〉 = σ̄−1
obs

2π∫
0

dφh sinφhσobs. (25)

In terms of these quantities the observed cross section (19)
can be written as

σobs = σ̄obs
(
1 + 〈cos φh〉 cos φh

+〈cos 2φh〉 cos 2φh

)
+ σadd. (26)

Here σadd originates from the contribution of the higher
harmonics (sinφh, sin 2φh, · · ·). There are no contributions
at the Born level (see (14)), and σBorn

add = 0.
The azimuthal asymmetry 〈cos φh〉 is negative in the

region considered. The RC to the quantity can exceed 10%
The result is shown in Fig.4.

Within the model of (12) 〈cos 2φh〉 is equal to zero at
the Born level. So the asymmetry in this case is defined
by the RC only. Our estimation shows that this effect is of
order 1%. The relative RC to the asymmetry can be esti-
mated using another model [9], where 〈cos 2φh〉 6= 0 at the
Born level. It is of order 10% in the region of applicability
of the model.

〈sinφh〉 is equal to zero at the Born level in any case.
But there is a nonzero contribution to it coming from the
RC. The numerical analysis shows that radiative correc-
tions do not give a visible contribution to it. For the HER-
MES kinematical region, the values of 〈sinφh〉 do not ex-
ceed 10−4.

We should stress that our predictions for the values of
the radiative effects display a strong model dependence.
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Therefore, any reliable method of radiative correction of
the experimental data has to be based on an iterative pro-
cedure, where all necessary fits for the RC codes use the
processing data as an input and are specified in every step
of this procedure. This procedure can be readily developed
on the basis of the code HAPRAD.

6 Discussion and conclusion

In this paper the QED radiative correction to different
observable quantities in the experiments on hadron elec-
troproduction is analyzed. The explicit covariant formulae
are given in Sect. 4 and in the Appendix.

The new FORTRAN code HAPRAD is developed in
order to perform the numerical analysis. It was shown in
Sect. 5.1 that the results for the RC to the cross section
integrated over pt and φh are in agreement with POL-
RAD 2.0 [13]. Several models for the structure functions
and slope parameter with respect to p2

t were applied. It
is found that the model based on a power p2

t -slope model
leads to smaller values for the RC.

Within the exponential model for G (13) the RC to
〈p2

t 〉 can exceed 40%. However, it essentially depends on
the model of the p2

t -distribution as well as on x and z.
The RC to the azimuthal asymmetries is of order 10%.

The asymmetry 〈sinφh〉 due to the RC is found to be
negligible but not equal to zero exactly.

The FORTRAN code HAPRAD is available
(aku@hep.by) for the calculation of the RC to observable
quantities in the experiments on hadron electroproduc-
tion.
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H. Ihssen, R. Milner, K. Oganessyan and H. Spiesberger for
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Appendix

In this appendix we list the explicit form for the functions
θij :

θij(τ, φk) = θ0
ij +cos φhθc

ij +sinφhθs
ij +cos 2φhθcc

ij , (A.1)

where

θ0
12 = 4τFIR,

θ0
22 = −1

2
FdS

2
pτ +

1
2
F1+SpSx

+F2−Sp + 2F2+M2τ

−2FIRM2τ + FIRSx,

θ0
32 = 2(−2Fdb

2τ − Fd(a+)2τ − F1+a−a+

+2F2− cos φkbbk + 2F2−aka+

−FIRM2
hτ − 2FIRaka−),

θc
32 = 4(−2Fdba

+τ − F1+ba− + F2− cos φkbka+

+2F2−bak − cos φkFIRbka−),

θcc
32 = 4b(−Fdbτ + F2− cos φkbk),

θs
32 = 4bk sinφk(F2−a+ − FIRa−),

θ0
42 = −2Fda

+Spτ − F1+a−Sp + F1+a+Sx

+2F2−akSp + 2F2−a+ + 2F2+τzSx

+FIRakSx − 2FIRa− − 2FIRτzSx,

θc
42 = 2(−2FdbSpτ + F1+bSx + F2− cos φkbkSp

+2F2−b + cos φkFIRbkSx),

θs
42 = 2bk sinφk(F2−Sp + FIRSx),

θ0
13 = −2(F + Fdτ

2),

θ0
23 = 2FM2 + FdM

2τ2 − 1
2
FdSxτ − 1

2
F1+Sp,

θ0
33 = 2FM2

h + FdM
2
hτ2 + 2Fda

ka−τ

−2F1+ cos φkbbk − 2F1+aka+,

θc
33 = 2(Fd cos φkbka−τ − F1+ cos φkbka+ − 2F1+bak),

θcc
33 = −2F1+ cos φkbbk,

θs
33 = 2bk sinφk(Fda

−τ − F1+a+),

θ0
43 = 2FzSx − Fda

kSxτ + Fda
−τ + Fdτ

2zSx

−F1+akSp − F1+a+,

θc
43 = −Fd cos φkbkSxτ − F1+ cos φkbkSp − 2F1+b,

θs
43 = −bk sinφk(FdSxτ + F1+Sp). (A.2)

Here

F1+ =
F

z1
+

F

z2
, F2+ = F

(
m2

z2
2

+
m2

z2
1

)
,

F2− = F

(
m2

z2
2

− m2

z2
1

)
, Fd =

F

z1z2
, (A.3)

where F = 1/(2π
√

λQ) and

FIR = F2+ − Q2Fd. (A.4)

The quantities z1,2 = kk1,2/kp can be expressed in terms
of integration variables as

z1 = λ−1
Q

(
Q2Sp + τ(SSx + 2M2Q2) − 2M cos φk

√
λτλ

)
,

z2 = λ−1
Q

(
Q2Sp + τ(XSx − 2M2Q2) − 2M cos φk

√
λτλ

)
,

(A.5)
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where

λτ = (τ − τmin)(τmax − τ), λ = SXQ2 −M2Q4 −m2λQ.
(A.6)

The scalar products of ph (see (9)) are expressed via
coefficients a1, a2, b, ak and bk:

2Ma1 = SEh − (SSx + 2M2Q2)plλ
−1/2
Q ,

2Ma2 = XEh − (XSx − 2M2Q2)plλ
−1/2
Q ,

b = −pt

√
λ/λQ,

2Mak = Eh − pl(Sx − 2M2τ)λ−1/2
Q ,

bk = −Mpt

√
λτ/λQ. (A.7)

The quantities Eh, Pl and Pt are invariants

Eh = zν =
zSx

2M
,

pl

√
λQ

M
= t − M2

h + Q2 + 2νEh,

p2
t = E2

h − p2
l − M2

h . (A.8)

In the rest frame they make sense of the energy, the lon-
gitudinal and transversal momenta of the final hadron.
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